



USN 15ME73

Seventh Semester B.E. Degree Examination, July/August 2021

Control Engineering

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions.

- 1 a. Define control system. Compare open loop and closed loop control system with an example.
  (08 Marks)
  - b. What are the requirements of an Ideal Control System? (08 Marks)
- **2** Explain with Block diagrams:
  - (i) Proportional controller.
- (ii) Integral controller.
- (iii) Derivative controller.
- (iv) P.I.D controller.
- (16 Marks)

(08 Marks)

3 a. Draw F-V and F-C circuits using analogue quantities.

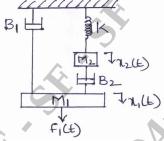



Fig. Q3 (a)

b. Determine the overall transfer function of a block diagram shown in Fig. Q3 (b). (08 Marks

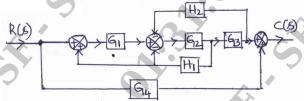



Fig. Q3 (b)

- a. Determine the transfer function of field controlled DC motor which relates output angular displacement (θ) with input voltage (e<sub>f</sub>).
   (08 Marks)
  - b. Obtain the overall TF of SFG given:

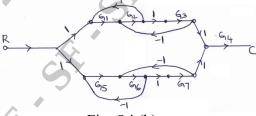



Fig. Q4 (b) (08 Marks)

- 5 a. Discuss the various standard inputs used in control system analysis. (04 Marks)
  - b. Derive the response equation of 1<sup>st</sup> order system for unit step input. (06 Marks)
  - c. Applying RH criterion, discuss the stability of closed loop system as a function of K for the following OLTF,

$$G(s)H(s) = \frac{K(s+1)}{s(s-1)(s^2+4s+16)}.$$
 (06 Marks)



## 15ME73

- 6 Sketch the Root locus plot for G(s)H(s) =. For what values of K, the system becomes UNSTABLE. (16 Marks)
- Sketch the Polar plot for the transfer function, G(s) =(06 Marks) 7
  - b. Apply Nyquist stability interior to the system with loop transfer function,

$$G(s)H(s) = \frac{4s+1}{s^2(1+s)(1+2s)}.$$

Ascertain its stability.

(10 Marks)

8 For a unity feedback system with OLTF, G(s) =

Draw the Bode plot and determine : GM, PM,  $\omega_{ec}$ ,  $\omega_{PC}$ . Comment on the stability of the system. (16 Marks)

- Write down the characteristics of, 9
  - Lag compensator (i)
  - (ii) Lead compensator.
  - (iii) Lag-lead compensator.

(09 Marks)

- b. Define: (i) State
- (ii) State vector
- (iii) Controllability
- (iv) Observability

(07 Marks)

Find the controllability and observability of the system described by the state equation:

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u};$$

(08 Marks)

b. Explain the design of lead compensator using Root locus (procedure only).

(08 Marks)